Cross-Domain Mediation in Collaborative Filtering

نویسندگان

  • Shlomo Berkovsky
  • Tsvi Kuflik
  • Francesco Ricci
چکیده

One of the main problems of collaborative filtering recommenders is the sparsity of the ratings in the users-items matrix, and its negative effect on the prediction accuracy. This paper addresses this issue applying cross-domain mediation of collaborative user models, i.e., importing and aggregating vectors of users' ratings stored by collaborative systems operating in different application domains. The paper presents several mediation approaches and initial experimental evaluation demonstrating that the mediation can improve the accuracy of the generated predictions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Auxiliary Domain Selection in Cross-Domain Collaborative Filtering

The problem of data sparsity largely limits the accuracy of recommender systems in collaborative filtering model. To alleviate the problem, cross-domain collaborative filtering was proposed by harnessing the information from the auxiliary domains. Previous works mainly focused on improving the model of utilizing the auxiliary information yet little on the selection of auxiliary domains, althoug...

متن کامل

Cross-Domain Collaborative Filtering with Review Text

Most existing cross-domain recommendation algorithms focus on modeling ratings, while ignoring review texts. The review text, however, contains rich information, which can be utilized to alleviate data sparsity limitations, and interpret transfer patterns. In this paper, we investigate how to utilize the review text to improve cross-domain collaborative filtering models. The challenge lies in t...

متن کامل

On the Use of Cross-Domain User Preferences and Personality Traits in Collaborative Filtering

We present a study comparing collaborative filtering methods enhanced with user personality traits and cross-domain ratings in multiple domains on a relatively large dataset. We show that incorporating additional ratings from source domains allows improving the accuracy of recommendations in a different target domain, and that in certain cases, it is better to enrich user models with both cross...

متن کامل

A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation

Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...

متن کامل

یک سامانه توصیه‎گر ترکیبی با استفاده از اعتماد و خوشه‎بندی دوجهته به‎منظور افزایش کارایی پالایش‎گروهی

In the present era, the amount of information grows exponentially. So, finding the required information among the mass of information has become a major challenge. The success of e-commerce systems and online business transactions depend greatly on the effective design of products recommender mechanism. Providing high quality recommendations is important for e-commerce systems to assist users i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007